Preliminary communication

[1-Pentaboryl-bis(trifluoromethyl)phosphine] nickel tricarbonyl

ANTON B. BURG and INDU B. MISHRA

Department of Chemistry, University of Southern California, Los Angeles, California 90007 (U.S.A.) (Received July 14th, 1970)

A compound having the structural formula

was formed quantitatively from the previously-reported ligand $1-(CF_3)_2 PB_5 H_8^{-1}$ in excess liquid Ni(CO)₄, easily at 25°. The pertinent stoichiometry (with mmole quantities) is represented as follows.

 $1(CF_3)_2 PB_5 H_8 + Ni(CO)_4 \rightarrow CO + 1 - (CF_3)_2 PB_5 H_8 \cdot Ni(CO)_3$ 0.258 (excess) 0.249

After the removal of the excess $Ni(CO)_4$ and a trace of fine brown sediment, the product appeared as a colorless non-volatile liquid, apparently quite stable at 25°. Its high purity was indicated by the cleanness of the four-element NMR spectra (recorded both before and after removal of the excess nickel carbonyl, with the same results), shown in Table 1.

TABLE 1

	1-(CF ₃) ₂ PB ₅ H ₈ ¹		1-(CF ₃) ₂ PB ₅ H ₈ • Ni(CO) ₃	
	δ (ppm)	J (cps)	δ (ppm)	J (cps)
H (terminal)	-2.74	169	-2.75	169
H (bridge)	1.87		1.95	<u>-</u>
F	49.9	72	57.8	75
Р	25.1	70	26.7	(?)
B1	68.8	(70)	67.0	137
B ₂₃₄₅	30.4	168	30.6	170

NMR COMPARISON OF LIGAND AND COMPLEX

These results were obtained by means of the Varian HA-100 instrument, at 100 Mc for H, 94.1 Mc for F, 40.5 Mc for P, and 32.1 Mc for B. All positive δ values were measured upfield from the standard: (CH₃)₄Si for H, Cl₃CF for F, H₃PO₄ for P, and (CH₃O)₃B for B.

Especially noteworthy is the increase of $J(PB_1)$ when the phosphorus atom forms the bonds to nickel. For the free ligand this J cannot be determined from the boron spectrum (wherein the 1-B atom is seen as a very broad singlet); it was estimated rather from the phosphorus spectrum (an overlapping quartet of septets appearing as a pseudodectet)¹. In the complex, however, the 1-B atom appears as a clear doublet. The reason for the increase in $J(PB_1)$ is not difficult to recognize: whereas the phosphorus lone-pair electrons in 1-(CF₃)₂PB₅H₈ would have mostly 3s character (so that the P–B bond would use mostly P_{3p} character), the P–Ni bond would use those phosphorus electrons more in the $3sp^3$ manner, giving more 3s character to the P–B bond. Simular increases in J values have been observed for other such complexes, for the same reason².

The infrared spectrum of $1-(CF_3)_2 PB_5 H_8 \cdot Ni(CO)_3$ (solution in cyclohexane) was recorded in the C-O stretching region by a well calibrated Beckman IR-7 instrument. The two expected modes appeared as a sharp singlet at 2090 cm⁻¹ and a somewhat more intense doublet at 2029 and 2019 cm⁻¹. There was an unexplained satellite at 2001 cm⁻¹ and a trace of Ni(CO)₄ was observed at 2047 cm⁻¹ (literature³ for the cyclohexane solution, 2044.7 cm⁻¹).

The clean formation of the LNi(CO)₃ type complex, showing no tendency to disproportionate, may be in part due to the steric difficulty of forming the L₂Ni(CO)₂ type with the two 1-(CF₃)₂PB₅H₈ ligands mutually adjacent on a tetrahedral nickel atom. However, we have not attempted actually to make $[1-(CF_3)_2PB_5H_8]_2Ni(CO)_2$. We did try to make a nickel complex from μ -CH₃CF₃PB₅H₈¹ and Ni(CO)₄ in a sealed tube at temperatures as high as 100°, but there was no reaction beyond a slight evolution of non-condensable gas, and no change in the boron NMR spectrum. For the intended result, of course, the P atom would have to be moved from its B–P–B bridging position to a B–P terminal position, at an energy cost which evidently would be greater than could be supplied by the formation of the LNi(CO)₃, including the cost of removing one CO.

ACKNOWLEDGEMENT

It is a pleasure to acknowledge the support of this research by the Office of Naval Research.

REFERENCES

- 1 A.B. Burg and H. Heinen, Inorg. Chem., 7 (1968) 1021.
- I.H. Sabherwal and A.B. Burg, Inorg. Nucl. Chem. Letters, 5 (1969) 259; Chem. Commun., (1969) 853.
 G. Bor, Spectrochim. Acta, 18 (1962) 819.
- J. Organometal. Chem., 24 (1970) C33-C34